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Abstract. This paper introduces the intuitionistic rough set and intuitionistic rough relational and rough object oriented database
models. Rough set, fuzzy set, and intuitionistic set uncertainty management are discussed and compared, and the model based
on intuitionistic and rough sets developed here is applied to databases. The intuitionistic rough set database models draw benefits
from both the rough set and intuitionistic techniques, providing greater management of uncertainty for databases applications in
a less than certain world.

1. Introduction

The only certain thing in life is uncertainty. In re-
al world applications and models, uncertainty plays a
major role, and it is up to scientists to determine suit-
able ways of managing uncertainty. It is significant that
computers are very precise and “certain” in fundamen-
tal ways of representing data. In fact, the basic storage
element of a computer is the bit: the bit is either on or
off, magnetized or not magnetized, high or low. In spite
of the technical advances in both computer software
and hardware, the two-valued bit is still the fundamen-
tal unit of information. It is the combination of bits,
however, and the “certain” representation of uncertain-
ty that allows for the modeling of more advanced and
sophisticated applications. Many theories of uncertain-
ty management have been developed for the mathemat-
ical modeling of uncertainty. These include such the-
ories as probability, possibility, rough sets, vague sets,
fuzzy sets, and intuitionistic sets to name a few. Each
of the theories has advantages and is better at modeling
some type of uncertainty over another.

This paper discusses some of the methods for mod-
eling uncertainty and imprecision, namely rough sets,
fuzzy sets, and intuitionistic fuzzy sets. The first few
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sections provide an overview of the theories. We then
introduce and formally define intuitionistic rough sets,
and show how intuitionistic rough sets provide greater
uncertainty management than rough set, fuzzy set, or
intuitionistic set techniques alone. Moreover, we show
how rough sets, fuzzy sets, intuitionistic sets, and one
type of fuzzy rough set are all special cases of this
intuitionistic rough set.

Later sections provide the foundation for the integra-
tion of intuitionistic rough sets into modeling of uncer-
tainty in databases. These build upon some of our pre-
vious research [5,8] with integrating fuzzy and rough
set techniques for uncertainty management in databas-
es. We first introduce the intuitionistic rough relational
database model. This database model incorporates in-
tuitionistic and rough set uncertainty management in-
to the underlying relational database model. Next we
introduce intuitionistic rough set uncertainty manage-
ment in object-oriented databases. There are signifi-
cant differences between the intuitionistic rough rela-
tional and object-oriented models. However, both can
take advantage of the rough and intuitionistic modeling
of uncertainty.

2. Rough sets

Rough set theory, introduced by Pawlak [22] and
discussed in greater detail in [18,19,24], is a technique
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for dealing with uncertainty and for identifying cause-
effect relationships in databases as a form of database
learning [25]. It has also been used for improved infor-
mation retrieval [26] and for uncertainty management
in relational databases [7,8].

Rough sets involve the following:
U is the universe, which cannot be empty,
R is the indiscernibility relation, or equivalence re-

lation,
A = (U, R), an ordered pair, is called an approxi-

mation space,
[x]R denotes the equivalence class of R containing

x, for any element x of U ,
elementary sets in A – the equivalence classes of R,
definable set in A – any finite union of elementary

sets in A.
Therefore, for any given approximation space de-

fined on some universe U and having an equivalence
relation R imposed upon it, U is partitioned into equiva-
lence classes called elementary sets which may be used
to define other sets in A. Given that X ⊆ U, X can
be defined in terms of the definable sets in A by the
following:

lower approximation of X in A is the set RX = {x ∈
U |[x]R ⊆ X}

upper approximation of X in A is the set RX = {x ∈
U |[x]R ∩ X �= Ø}.

Another way to describe the set approximations is
as follows. Given the upper and lower approximations
RX and RX, of X a subset of U, the R-positive region
of X is POSR(X) = RX, the Rnegative region of X is
NEGR(X) = U−R X, and the boundaryor R-borderline
region of X is BNR(X) = RX – RX. X is called R-
definable if and only if RX = R X. Otherwise, RX �= R
X and X is rough with respect to R. A rough set in A
is the group of subsets of U with the same upper and
lower approximations. An illustration of rough set X
is shown in Fig. 1.

The major rough set concepts of interest are the use
of an indiscernibility relation to partition domains into
equivalence classes and the concept of lower and upper
approximation regions to allow the distinction between
certain and possible, or partial, inclusion in a rough set.

The indiscernibility relation allows us to group items
based on some definition of ‘equivalence’ as it relates
to the application domain. We may use this partitioning
to increase or decrease the granularity of a domain, to
group items together that are considered indiscernible
for a given purpose, or to “bin” ordered domains into
range groups.

In order to allow possible results, in addition to the
obvious, certain results encountered in querying an or-

dinary spatial database system, we may employ the use
of the boundary region information in addition to that of
the lower approximation region. The results in the low-
er approximation region are certain. These correspond
to exact matches. The boundary region of the upper
approximation contains those results that are possible,
but not certain.

3. Fuzzy rough sets

Several researchers have studied various ways of
combining fuzzy and rough set theories [13,14,20] in
an effort to reap the benefits of each. Others have in-
vestigated the interrelations between the two comple-
mentary theories [11,23,27]. Fuzzy sets and rough sets
are not equivalent, and because they represent different
types of uncertainty, a combination of the two is often
useful.

In [27] it was shown that rough sets can be expressed
by a fuzzy membership function µ → {0, 0.5, 1}. In
this model, all elements (equivalence classes) of the
lower approximation, or positive region, have a mem-
bership value of one. Those elements of the boundary
region are assigned a membership value of 0.5. El-
ements not belonging to the rough set have a mem-
bership value of zero. Rough set definitions of union
and intersection were modified so that the fuzzy model
would satisfy all the properties of rough sets [23], thus
allowing a rough set to be expressed as a fuzzy set.

In [4] we integrated the fuzziness into the rough re-
lational database model. However, we were interested
in using the fuzzy values to quantify the level of un-
certainty of the boundary region elements and there-
fore did not require membership values of elements of
the boundary region to equal 0.5, but allowed them to
take on values anywhere within the range of real num-
bers between zero and one, noninclusive. Additional-
ly, database union and intersection operators for fuzzy
rough sets were defined. They are comparable to those
for ordinary fuzzy sets, where MIN and MAX are used
to obtain membership values of redundant elements.
We review those definitions here.

Let U be a universe, X a rough set in U.

Definition. A fuzzy rough set Y in U is a membership
function µY (x) which associates a grade of membership
from the interval [0,1] with every element of U where

µY (RX) = 1

µY (U − RX) = 0

0 < µY (RX − RX) < 1.
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Fig. 1. Example of a Rough Set X.

All elements (equivalence classes) of the positive re-
gion have a membership value of one and elements of
the boundary region have a membership value between
zero and one.

Definition. The union of two fuzzy rough sets A and
B is a fuzzy rough set C where

C = {x|x ∈ A ORx ∈ B}
µC(x) = MAX[µA(x), µB(x)].

Definition. The intersection of two fuzzy rough sets A
and B is a fuzzy rough set C where

C = {x|x ∈ A ANDx ∈ B}
µC(x) = MIN [µA(x), µB(x)].

4. Intuitionistic sets

An intuitionistic set [1,2] (intuitionistic fuzzy set) is
a generalization of the traditional fuzzy set introduced
by Zadeh [28].

Let set X be fixed. An intuitionistic set A is defined
by the following:

A = {< x, µA(x), vA(x) >| x ∈ X}, and where
µA : X → [0, 1], andvA : X → [0, 1].

The degree of membership of element x ∈ X to the
set A is denoted by µA(x), and the degree of nonmem-
bership of element x ∈ X to the set A is denoted by
vA(x). A is a subset of X.

Additionally, for all x ∈ X,

0 � µA(x) + vA(x) � 1.

A hesitation margin,

πA(x) = 1 − (µA(x) + vA(x)),
expresses a degree of uncertainty about whether x be-
longs to X or not, or uncertainty about the membership
degree. This hesitancy may cater toward membership
or nonmembership.

Example.
A person may be happy or unhappy in traditional log-

ic. In the two-valued logic, there are only two choices.
There is no continuum between happy and unhappy;
nor is there any uncertainty involved.

In rough sets many things may be considered in the
realm of happiness and unhappiness, and some of them
will be grouped together in equivalence classes. Some
of these classes are entirely included in the set happy:
[overjoyed, ecstatic], [glad] or [happy], for example.
Some are not in the rough set happy at all [upset, angry]
or [furious], [sad, unhappy], for example. Lastly, there
are some that involve uncertainty about the belonging
to the rough set happy. These may include such equiv-
alence classes as [satisfied, content], or [nonchalant,
indifferent]. These would belong to the boundary, or
uncertain region of the rough set.

In fuzzy sets a person could be happy to a certain
degree. The degree of membership of an element to
the fuzzy set of happy is represented by a membership
value between zero and one. For example, one could
be happy to a degree of 0.8. This implies unhappiness
to a degree of 0.2. However, a person could be happy
to a degree of 0.8, but not unhappy at all, or at least not
to that extent. This cannot be represented in fuzzy sets.

In intuitionistic fuzzy sets, however, there are mea-
sures for both the degree of membership and the de-
gree of nonmembership. A person could be happy to a
degree of 0.8, but only unhappy to a degree of 0.05, re-
sulting in a hesitancy of 0.15. This two sided fuzziness
in the intuitionistic set provides greater management of
uncertainty for many real world cases.
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5. Intuitionistic rough sets

In this section we introduce the intuitionistic rough
set, which incorporates the beneficial properties of
both rough set and intuitionistic set techniques. Intu-
itionistic rough sets are generalizations of fuzzy rough
sets that give more information about the uncertain,
or boundary region. They follow the definitions for
partitioning of the universe into equivalence classes as
in traditional rough sets, but instead of having a sim-
ple boundary region, there are basically two bound-
aries formed from the membership and nonmembership
functions.

Let U be a universe, Y a rough set in U, defined
on some approximation space which partitions U into
equivalence classes.

An intuitionistic rough set Y in U is < Y, µY (x),
vY (x) >, where µY (x) is a membership function
which associates a grade of membership from the in-
terval [0,1] with every element (equivalence class) of
U, and vY (x) associates a degree of non membership
from the interval [0,1] with every element (equivalence
class) of U, where

0 � µY (x)+vY (x) � 1, where x denotes the equiv-
alence class containing x.

A hesitation margin,

πY (x) = 1 − (µY (x) + vY (x)),

Consider the following special cases < µ, v > for some
element of Y:

<1, 0> denotes total membership. This corresponds
to elements found in RY.

<0, 1> denotes elements that do not belong to Y.
Same as U – RY.

<0.5, 0.5> corresponds to traditional rough set
boundary region.

<p, 1-p> corresponds to fuzzy rough set in that
there is a single boundary. In this case we assume
that any degree of membership has a corresponding
complementary degree of non membership.

<p, 0> corresponds to fuzzy rough set. In this case
there is no complement to what p shows membership
in.

<0, q> This case can not be modeled by fuzzy rough
sets. It denotes things that are not a member of RY or
RY. It falls somewhere in the region U – RY.

<x, y> Intuitionistic set general case, uncertain dou-
ble boundary, one for membership and one for non-
membership.

Let Y ′ denote the complement of Y. Then the in-
tuitionistic set having < µY (x), µY ′(x) > is same as
fuzzy rough set.

The last two cases above, <0, q> and <x, y>, can-
not be represented by fuzzy sets, rough sets, or fuzzy
rough sets. These are the situations which show that in-
tuitionistic rough sets provide greater uncertainty man-
agement than the others alone. Note, however, that
with the intuitionistic set we do not lose the information
about uncertainty provided by other set theories, since
from the first few cases we see that they are special
cases of the intuitionistic rough set.

We may also perform operations on the intuitionistic
rough sets such as union and intersection. We define
these operations next. The definition of these operators
is necessary for applications such as the intuitionistic
rough relational database model.

Definition. The union of two intuitionistic rough sets
A and B is an intuitionistic rough set C where

C = {x | x∈ A OR x∈ B}
µC(x) = MAX[µA(x),µB(x)],vC(x)

= MIN[vA(x),vB(x)].

Definition. The intersection of two intuitionistic rough
sets A and B is an intuitionistic rough set C where

C = {x | x∈ A AND x∈ B}
µC(x) = MIN[µA(x),µB(x)], vC (x)

= MAX[vA(x), vB(x)].

In this section we defined intuitionistic rough sets
and compared them with rough sets and fuzzy sets.
Although there are several various way of combin-
ing rough and fuzzy sets, we focused on those fuzzy
rough sets as defined in [4,5] and used for fuzzy
rough databases, since our intuitionistic rough relation-
al database model follows from this. The intuitionistic
rough relational database model will have an advan-
tage over the rough and fuzzy rough database models
in that the non membership uncertainty of intuitionistic
set theory will also play a role, providing even greater
uncertainty management than the original models. In
the remainder of the paper we present relational and
object oriented database models that provide uncertain-
ty management through the use of intuitionistic rough
set techniques.

6. Intuitionistic rough relational database model

The intuitionistic rough relational database, as in the
ordinary relational database, represents data as a col-
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lection of relations containing tuples. Because a rela-
tion is considered a set having the tuples as its mem-
bers, the tuples are unordered. In addition, there can
be no duplicate tuples in a relation. A tuple t i takes the
form (di1, di2, . . . , dim, diµ div), where dij is a do-
main value of a particular domain set Dj and diµ ∈ Dµ,
where Dµ is the interval [0,1], the domain for intuition-
istic membership values, and Dv is the interval [0,1],
the domain for intuitionistic nonmembership values.
In the ordinary relational database, d ij ∈ Dj . In the
intuitionistic rough relational database, except for the
intuitionistic membership and nonmembership values,
however, dij ⊆ Dj , and although dij is not restricted to
be a singleton, dij �= Ø. Let P(Di) denote any non-null
member of the powerset of Di.

Definition. An intuitionistic rough relation R is a sub-
set of the set cross product P(D1)× P(D2) × · · ·×
P(Dm)× Dµ.× Dv.

For a specific relation, R, membership is determined
semantically. Given that D1 is the set of names of
nuclear/chemical plants, D2 is the set of locations, and
assuming that RIVERB is the only nuclear power plant
that is located in VENTRESS,

(RIVERB, VENTRESS, 1, 0)
(RIVERB, OSCAR, 0.7, 0.3)
(RIVERB, ADDIS, 1, 0)
(CHEMO, VENTRESS, 0.3, 0.2)

are all elements of P(D1) × P(D2) × Dµ× Dv . How-
ever, only the element (RIVERB, VENTRESS, 1, 0)
of those listed above is a member of the relation R
(PLANT, LOCATION, µ, v), which associates each
plant with the town or community in which it is located.
An intuitionistic rough tuple t is any member ofR. If
ti is some arbitrary tuple, then ti = (di1, di2, . . . , dim,
diµ, div) where dij ⊆ Dj and diµ ∈ Dµ, div ∈ Dv .

Definition. An interpretation α = (a1, a2, . . . , am, aµ,
av) of an intuitionistic rough tuple ti = (di1, di2, . . . ,
dim, diµ, div) is any value assignment such that aj ∈
dij for all j.

The interpretation space is the cross product D1×
D2 × · · ·× Dm× Dµ× Dv but is limited for a given re-
lation R to the set of those tuples that are valid accord-
ing to the underlying semantics of R. In an ordinary
relational database, because domain values are atomic,
there is only one possible interpretation for each tuple
ti. Moreover, the interpretation of t i is equivalent to the
tuple ti. In the intuitionistic rough relational database,
this is not always the case.

Let [dxy] denote the equivalence class to which dxy

belongs. When dxy is a set of values, the equivalence
class is formed by taking the union of equivalence class-
es of members of the set; if dxy = {c1, c2, . . . , cn},
then [dxy] = [c1] ∪ [c2] ∪ . . .∪ [cn].

Definition. Tuples ti = (di1, di2, . . . , din, diµ, div)
and tk = (dk1, dk2, . . . , dkn, dkµ, div) are redundant if
[dij] = [dkj] for all j = 1, . . . , n.

If a relation contains only those tuples of a lower
approximation, i.e., those tuples having a µ value equal
to one and v equal to zero, the interpretationα of a tuple
is unique. This follows immediately from the definition
of redundancy. In intuitionistic rough relations, there
are no redundant tuples. The merging process used in
relational database operations removes duplicate tuples
since duplicates are not allowed in sets, the structure
upon which the relational model is based.

Tuples may be redundant in all values except µ and
v. As in the union of intuitionistic rough sets where the
maximum membership value of an element is retained,
it is the convention of the intuitionistic rough relational
database to retain the tuple having the higher µ value
when removing redundant tuples during merging. If we
are supplied with identical data from two sources, one
certain and the other uncertain, we would want to retain
the data that is certain, avoiding loss of information.
If the µ values are equal but the v values unequal, we
retain that tuple having the lower v value.

Recall that the rough relational database is in non-
first normal form; there are some attribute values which
are sets. Another definition, which will be used for
upper approximation tuples, is necessary for some of
the alternate definitions of operators to be presented.
This definition captures redundancy between elements
of attribute values that are sets:

Definition. Two sub-tuples X = (dx1, dx2, . . . , dxm)
and Y = (dy1, dy2, . . . , dym) are roughlyredundant,
≈R, if for some [p] ⊆ [dxj] and [q] ⊆ [dyj], [p] = [q]
for all j = 1, . . . , m.

In order for any database to be useful, a mechanism
for operating on the basic elements and retrieving spec-
ified data must be provided. The concepts of redun-
dancy and merging play a key role in the operations
defined in Section 3.3.

6.1. Intuitionistic rough relational operators

In [8], we defined several operators for the rough re-
lational algebra, and in [4] demonstrated the expressive
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power of the fuzzy rough versions of these operators
in the fuzzy rough relational database model. We now
review similar operators for the intuitionistic rough re-
lational database. Recall that for all of these operators
the indiscernibility relation is used for equivalence of
attribute values rather than equality of values.

6.1.1. Difference
The intuitionistic rough relational difference opera-

tor is very much like the ordinary difference operator
in relational databases and in sets in general. It is a
binary operator that returns those elements of the first
argument that are not contained in the second argument.

In the intuitionistic rough relational database, the dif-
ference operator is applied to two intuitionistic rough
relations and, as in the rough relational database, indis-
cernibility, rather than equality of attribute values, is
used in the elimination of redundant tuples. Hence, the
difference operator is somewhat more complex. Let
X and Y be two union compatible intuitionistic rough
relations.

Definition. The intuitionistic rough difference, X–Y,
between X and Y is a intuitionistic rough relation T
where

T = {t(d1, . . . , dn, µi,,vi) ∈ X | t(d1, . . . , dn, µi,vi)

/∈ Y} ∪
{t(d1, . . . , dn, µi,,vi) ∈ X | t(d1, . . . , dn, µj,vj)

∈ Y and µi > µj}∪
{t(d1, . . . , dn, µi,vi) ∈ X | t(d1, . . . , dn, µj,vj)

∈ Y and µi = µj and vi < vj}
The resulting intuitionistic rough relation contains all
those tuples which are in the lower approximation of
X, but not redundant with a tuple in the lower approxi-
mation of Y. It also contains those tuples belonging to
uncertain regions of both X and Y, but which have a
higher µ value in X than in Y or equal µ values and
lower v values.

6.1.2. Union
Database relations are sets, and as such the union

operator can be applied to any two union-compatible
relations to result in a third relation which has as its
tuples all the tuples contained in either or both of the
two original relations. This operator can be extended
to apply to intuitionistic rough relations. Let X and Y
be two union compatible intuitionistic rough relations.

Definition. The intuitionistic rough union of X and Y,
X ∪ Y is a intuitionistic rough relation T where

T = {t | t ∈ X OR t ∈ Y} and µT (t) = MAX[µX (t),
µY (t)], and if µX (t) = µY (t), vT (t) = MIN[vX (t),
vY (t)].

The resulting relation T contains all tuples in either
X or Y or both, merged together and having redundant
tuples removed. If X contains a tuple that is redundant
with a tuple in Y except for the µ value, the merging
process will retain only that tuple with the higher µ
value. Those tuples redundant in all values except v
will retain the tuple having the lower v value.

6.1.3. Intersection
The intuitionistic rough intersection, another binary

operator on intuitionistic rough relations, can be de-
fined similarly.

Definition. The intuitionistic rough intersection of X
and Y, X ∩ Y is a intuitionistic rough relation T where

T = {t | t ∈ X AND t ∈ Y} and µT (t) = MIN[µX (t),
µY (t)], and if µX (t) = µY (t), vT (t) = MAX[vX (t),
vY (t)].

In intersection, the MIN operator is used in the merg-
ing of equivalent tuples having different µ values and
the result contains all tuples that are members of both
of the original intuitionistic rough relations. For like µ
values in redundant tuples, the v values are compared,
and the tuple having the higher will be retained.

6.1.4. Select
The select operator for the intuitionistic rough re-

lational database model, σ, is a unary operator which
takes a intuitionistic rough relation X as its argument
and returns a intuitionistic rough relation containing a
subset of the tuples of X, selected on the basis of values
for a specified attribute. The operation σA=a(X), for
example, returns those tuples in X where attribute A is
equivalent to the class [a]. In general, select returns a
subset of the tuples that match some selection criteria.

Let R be a relation schema, X an intuitionistic rough
relation on that schema, A an attribute in R, a = {a i}
and b = {bj}, where ai,bj ∈ dom(A), and ∪x is inter-
preted as “the union over all x”.

Definition. The intuitionistic rough selection, σA=a

(X), of tuples from X is an intuitionistic rough relation
Y having the same schema as X and where

Y = {t ∈ X |∪i[ai]⊆ ∪j [bj]},
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where ai ∈ a, bj ∈ t(A) and where membership values
for tuples are calculated by multiplying the original
membership value µ by

card(a)/card(b)

where card(x) returns the cardinality, or number of
elements, in x. The nonmembership value v remains
the same as in the intuitionistic rough relation X, since
the result of performing this operation does not give us
any additional information about nonmembership.

6.1.5. Project
Project is a unary intuitionistic rough relational op-

erator. It returns a relation that contains a subset of the
columns of the original relation. Let X be a intuitionis-
tic rough relation with schema A, and let B be a subset
of A. The intuitionistic rough projection of X onto B is
a intuitionistic rough relation Y obtained by omitting
the columns of X which correspond to attributes in A–
B, and removing redundant tuples. Recall the defini-
tion of redundancy accounts for indiscernibility, which
is central to the rough sets theory, and that higher µ
values have priority over lower ones. For like µ values,
the v values are examined and the tuple having lower v
value is retained.

Definition. The intuitionistic rough projection of X
onto B, πB (X), is an intuitionistic rough relation Y
with schema Y(B) where

Y(B) = {t(B) | t ∈ X}.

6.1.6. Join
Join is a binary operator that takes related tuples

from two relations and combines them into single tu-
ples of the resulting relation. It uses common attributes
to combine the two relations into one, usually larger,
relation. Let X(A1, A2, . . . , Am) and Y(B1, B2, . . . ,
Bn) be intuitionistic rough relations with m and n at-
tributes, respectively, and AB = C, the schema of the
resulting intuitionistic rough relation T.

Definition. The intuitionistic rough join,
X <JOIN CONDITION> Y, of two relations X and Y, is
a relation T(C1, C2, . . . , Cm+n) where

T = {t |∃ tX ∈ X, tY ∈ Y for tX = t(A), tY = t(B)},
and where

(1) tX (A ∩ B) = tY (A∩ B), µ = 1
(2) tX (A ∩ B) ⊆ tY (A ∩ B) or tY (A ∩ B) ⊆ tX (A ∩

B), µ = MIN(µX , µY ), if µX=µY , v = MAX(vX , vY )
<JOIN CONDITION> is a conjunction of one or more
conditions of the form A = B.

Only those tuples which resulted from the “joining”
of tuples that were both in lower approximations in the
original relations belong to the lower approximation
of the resulting intuitionistic rough relation. All other
“joined” tuples belong to the uncertain region, having
membership values less than one. The intuitionistic
membership value of the resultant tuple is simply cal-
culated as in [6] by taking the minimum of the member-
ship values of the original tuples. Taking the minimum
value also follows the logic of [21], where in joining
tuples with different levels of information uncertainty,
the resultant tuple can have no greater certainty than
that of its least certain component. For equal mem-
bership values, the maximum nonmembership value is
retained.

This section concerned the modeling of imprecision,
vagueness, and uncertainty in databases through an ex-
tension of the relational model of data: the intuitionis-
tic rough relational database. The intuitionistic rough
relational database was formally defined, along with
an intuitionistic rough relational algebra for querying.
Comparisons of theoretical properties of operators in
this model with those in the standard relational model
were discussed.

7. Intuitionistic Rough Object-Oriented Database
(IROODB) model

The object-oriented programming paradigm has be-
come quite popular in recent years, both as a modeling
tool and for code development for databases and other
applications. Often objects can more realistically mod-
el an enterprise, enabling developers to easily transition
from a conceptual design to the actual code. The con-
cepts of classes and inheritance allow for code reuse
through specialization and generalization. A class hi-
erarchy is designed such that classes at the top of the
hierarchy are the most general and those nearer the bot-
tom more specialized. A class inherits data and be-
havior from classes at higher levels in the class hier-
archy. This promotes reuse of existing functionality,
which can save valuable programming time. If code is
already available for a task and that code has been test-
ed, it is often better to use that code, perhaps with some
slight modification, than to develop and test code from
scratch. The concept of polymorphism allows the same
name to be used for methods differing in functionality
for different object types.

Essentially, an object is an instance of a class in a
class hierarchy. Each class defines a particular type of
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object including its public and private variables and op-
erations associated with the functionality of the object,
which are called methods. An object method is invoked
by the passing of a message to the object in which the
method is defined. The data variables and methods
are encapsulated in the object that defines them, which
means that they are packaged in, and can only be ac-
cessed through, the object. In OODBs the values of
the variables determine the state and these, along with
methods determine the behavior of the object. Encap-
sulation enables a component of the system to be ex-
tended or modified with minimal impact on other parts
of the system.

There are many advantages associated with the
object-oriented database approach compared to a rela-
tional database approach. A major advantage is that
very complex data structures and relationships in the
data, as is often the case in spatial data can be mod-
eled. According to Fayad and Tsai [16],object-oriented
technology provides several other benefits. These in-
clude reusability, extensibility, robustness, reliability,
and scalability. Object modeling helps in requirements
understanding and collaboration of group members and
the use of object-oriented techniques leads to high qual-
ity systems that are easy to modify and to maintain.

We next develop the intuitionistic rough object-
oriented database model. We follow the formal
framework and type definitions for generalized object-
oriented databases proposed by [12] and extended for
rough sets in [5], which conforms to the standards set
forth by the Object Database Management Group [9].
We extend this framework, however, to allow for intu-
itionistic rough set indiscernibility and approximation
regions for the representation of uncertainty as we have
previously done for relational databases [4,8]. The in-
tuitionistic rough object database scheme is formally
defined by the following type system and constraints.

The type system, TS = [T, P, f type
impl], where T can be a

literal type Tliteral, which can be a base type, a collec-
tion literal type, or a structured literal type. It also con-
tains Tobject, which specifies object types, Treference,
the set of specifications for reference types, and a void
type. In the type system, each domain dom ts ∈ Dts, the
set of domains. This domain set, along with a set of op-
erators Ots and a set of axioms Ats, capture the seman-
tics of the type specification. The type system is then
defined based on these type specifications, the set of all
programs P, and the implementation function mapping
each type specification for a domain onto a subset of
the powerset of P that contains all the implementations
for the type system:

f type
impl: T → ρ (P) giving ts → {p1, p2, . . . pn}.

We are particularly interested in object types. Fol-
lowing [12], we may specify a class t of object types
as

Class id(id1 : s1; . . . ; idn : sn) or

Class id: id1, . . . , idn(id1 : s1; . . . ; idn : sn)

where id, an identifier, names an object type, {idi| 1
� i � m} is a finite set of identifiers denoting parent
types of t, and {idi : si| 1 � i � n} is the finite set
of characteristics specified for object type t within its
syntax. This set includes all the attributes, relation-
ships and method signatures for the object type. The
identifier for a characteristic is idi and the specification
is si for each of the idi : si.

Consider a GIS which stores spatial data concerning
water and land forms, structures, and other geographic
information. If we have simple types defined for string,
set, geo, integer, etc., we can specify an object type

Class Bridge (
Location: geo;
Name: string;
Height: integer;
Material: Set(string)
WaterType:Set(string)
WaterFlow:Set(string));

An example instance of object type Bridge might look
like the following:

[oid1, Ø, Bridge, Struct(0289445, “Castor Creek
Bridge”, 7, Set(concrete), Set(creek), Set (E,NE,N))]

following the definition of instance of an object
type [12], the quadruple o = [oid, N, t, v] consisting
of a unique object identifier, a possibly empty set of
object names, the name of the object type, and for all
attributes, the values (vi ∈ domsi) for that attribute,
which represent the state of the object. The object type
t is an instance of the type system ts and is formally de-
fined in terms of the type system and its implementation
function t = [ts, ftype

impl (ts)].
Indiscernibility is the inability to distinguish between

two or more values. For example, the average person
describing the color of a car involved in a hit-and-run
accident may say that it is “burgundy,” when it actual-
ly is maroon. As it turns out, “burgundy” is probably
good enough for helping the police identify the vehi-
cle. However, a painter who specializes in automobile
paint and body work will find it easy to discern between
burgundy, maroon, and several other related colors. In-
discernibility can also arise from lack of precision in
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measurement, limitations of computational representa-
tion, or the granularity or resolution of the sampling or
observations.

In the rough set object-oriented database, indiscerni-
bility is managed through classes. Every attribute do-
main is implemented as a class hierarchy, with the low-
est elements of the hierarchy representing the equiva-
lence classes based on the finest possible partitioning
for the domain as it pertains to the application. Consid-
er, for example, a GIS, where objects have an attribute
called landClass. There are many different classifica-
tions for land area features, such as those covered by
forests, pastures, urban area, or some type of water, for
example.

Ignoring the non-water parts of the landClass do-
main, and focusing on the water-related parts, we see
that the domain set

domlandClass = {creek, brook, stream, branch, riv-
er, lake, pond, waterhole, slough}

can be partitioned in several different ways. One parti-
tioning, which represents the finest partitioning (more,
but smaller, equivalence classes) is given by

R1 = {[creek, brook, stream], [branch], [river],
[lake], [slough], [pond, waterhole]}.

This is evidenced by the lowest level of the hierarchy.
An object type (domain class) for landClass may be

defined as
Class landClass (

numEquivClass: integer;
name: string;
indiscernibility: Set(Ref(equivClass)))

At this lowest level, each landClass object has only one
reference in its attribute for indiscernibility, the object
identifier for the particular equivalence class. These
reference individual equivalence class objects defined
by

Class equivClass(
element: Set(string);
N: integer;
Name: string).

In this case, we have six separate equivalence classes
shown below:

[oid56, Ø, equivClass, Struct(Set(“creek,” “brook,”
“stream”), 3, “creek”)]
[oid57, Ø, equivClass, Struct(Set(“branch”), 1,
“branch”)]

Note that the name of the class can be set equal to any
of the values within the class.

If we want to change the partitioning, such that
our application only distinguishes between flowing and

standing water, for example, our equivalence classes
become

R2 = {[creek, brook, river, stream, branch], [lake,
pond, waterhole, slough]}.

Using this approximation space, R2, we would then
have the landClass objects

[oid101, Ø, landClass, Struct(3, “Flowing water,”
Set(oid56, oid57, oid58))]
[oid102, Ø, landClass, Struct(3, “Standing water,”
Set(oid59, oid60, oid61))].

Each domain class i in the database (such as landClass,
that has an indiscernibility relation associated with it),
domi ∈ Di, has methods for maintaining the current
level of granulation, changing the partitioning, adding
new domain values to the hierarchy, and for determin-
ing equivalence based on the current indiscernibility
relation imposed on the domain class.

Every domain class, then, must be able to not only
store the legal values for that domain, but to maintain
the grouping of these values into equivalence classes.
This can be achieved through the type implementa-
tion function and class methods, and can be specified
through the use of generalized constraints as in [5,12]
for a generalized OODB.

An ordinary (non-indiscernibility)object class in our
sample database, having one of its attributes landClass,
may be defined as follows:

Class RuralProperty (
Location: geo;
Name: string;
Owner: string;
landType: Set(landClass));

Particular instances of this class, for example, might
include:

[oid24, Ø, RuralProperty, Struct(01987345, “Elm
Plantation”, “Bob Owner”, Set(“waterhole,” “pas-
ture”))],
[oid27, Ø, RuralProperty, Struct(01987355, Ø,
“Betty Owner”, Set(“forest,” “lake”))],

See [5] for details of how rough set concepts are inte-
grated in this OO model, and how changing the gran-
ularity of the partitioning affects query results. In that
paper the OO model is extended for fuzzy and rough set
uncertainty. A natural extension which we introduce
here is for intuitionistic sets.

If we extend the rough OODB further to allow for
intuitionistic types, the type specifications T can be
generalized to a set �̌ as in [12], so that the definitions
of the domains are generalized to intuitionistic sets:



www.manaraa.com

114 T. Beaubouef and F.E. Petry / Uncertainty modeling for database design using intuitionistic and rough set theory

For every ts ∈ �, having domain ts being dom ts, the
type system ts ∈ � is generalized to

ts ∈ �̌
where domain of ts is denoted by dom ts and is defined
as the set ρ (domts) of intuitionistic sets on domts, and
Ots is generalized to Ots, which contains the general-
ized version of the operators. This is consistent with
the UFO database model [17] as well.

The generalized type system then is a triple

GTS = [�̌, P, f
type

impl]

where �̌ is the generalized the type system, P is the set

of all programs, and f
type

impl is a mapping which maps
each ts ∈ �̌ onto that subset of P that contains the
implementation for ts.

An instance of this GTS is a generalized type t =
[ts, f

type

impl(ts)], ts ∈ �̌.
For example,
Class Bridge (

Location: geo;
Name: string;
Height: IntuitionisticSet(integer);
Material: Set(string)
WaterType:Set(string)
WaterFlow:Set(string));

A generalized object belonging to this class is defined
by

o = [oid, N, t, f
type

impl(ts), v]

where v draws values from the generalized domain that
allows an object to contain intuitionistic membership
and nonmembership values as part of the state of the
object.

Both intuitionistic and rough set uncertainty man-
agement can be used in this generalized OODB model.
For example, some intuitionistic rough instances of the
previously defined object type Bridge might include:

[oid1, Ø, Bridge, Struct(0289445, “Castor Creek
Bridge”, {(5, (0.7, 0.2)), (7, (0.9, 0.1))}, Set(concr-
ete), Set(creek), Set (E,NE,N))]

where the attribute Height is shown as an intuitionis-
tic set, and Material, WaterType, and WaterFlow are
shown as ordinary sets. We assume that each of these
base objects is certain, i.e., each object fully exists and
has a membership value of one. We further assume
that we have defined the partitioning R1 for the domain
WaterType as discussed previously:

R1 = {[creek, brook, stream], [branch], [river],
[lake], [pond, waterhole], [slough]}.

It is easy to see the need for various types of un-
certainty in spatial database from even this simplified
example. There is indiscernibility in the labels for var-
ious types of water. Different users might use differ-
ent names for the same water types. Or, data may
have been gathered from multiple sources and current-
ly being consolidated into a single database applica-
tion. Rough sets allow us to specify this level of in-
discernibility and to adjust it, when necessary to fit the
application.

There is intuitionistic uncertainty in the height of
the bridges. This uncertainty may be due to one of
several causes. The bridge might be too high to measure
accurately by a non-skilled worker, or it might be that
there is uncertainty about where the top of the bridge
should be marked. If there is a light on the top, do we
measure to the top of the light? Uncertainty might also
arise from the location at which the bridge is measured.
Is it measured in height above the water? If so, the
water level probably varies over time. Is it measured in
height above the ground? If so, this height is likely to
be different on either end of the bridge.

Direction of water flow in this example illustrates
yet another type of uncertainty, which can be modeled
through the approximation regions of rough sets. Often
waterways twist and turn in various directions. If a riv-
er is generally flowing toward the east, but beneath the
bridge it is flowing toward the northeast, we may con-
sider including both of these directions in the database.
This decision would obviously depend on the applica-
tion, and whether it is necessary to have information on
the direction of water flow for the entire water body, or
only at the point below the bridge.

Uncertainty in spatial databases and geographic in-
formation systems becomes an even greater issue when
considering topological relationships among various
objects or regions, which themselves may be uncer-
tain. However, intuitionistic and rough set uncertain-
ty management, incorporated into an OODB, will al-
low for better modeling of the GIS and for additional
information to be obtained from the underlying data.

In this section we extended a formal framework of
object-oriented databases to allow for modeling of var-
ious types of imprecision, vagueness, and uncertainty
that typically occur in spatial data. The model is based
on a formal type system and specified constraints, thus
preserving integrity of the database, while at the same
time allowing an OODB to be generalized in such a
way as to include both intuitionistic and rough set un-
certainty, both well-developed methods of uncertainty
management.
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No information is lost in using the intuitionis-
tic rough object-oriented data model over traditional
OODBs. One can always examine the intuitionistic
membership and nonmembership values of objects re-
sulting from intuitionistic rough expressions to discov-
er which of those are certain and which are possible.
The certain results include exactly those that would be
obtained in a non- intuitionistic, non-rough database.
In this model, however, we are provided also with those
results that are possible, along with intuitionistic mem-
bership values to aid in determining the degrees of un-
certainty of each of the results. Incorporation of in-
tuitionistic and rough set uncertainty into the OODB
model is essential for representing imprecision and un-
certainty in spatial data entities and in their interrela-
tionships.

8. Spatial data applications with rough and
intuitionistic sets

Many of the problems associated with data are preva-
lent in all types of databases systems. Spatial databas-
es and GIS contain descriptive as well as positional
data. The various forms of uncertainty may occur in
both types of data, so many of the issues discussed
below apply to ordinary databases as well. See [7,
8] for in-depth discussion of implementation of rough
set uncertainty in (non-spatial) databases. These same
techniques, including integration of data from multiple
sources, time-variant data, uncertain data, imprecision
in measurement, inconsistent wording of descriptive
data, and the “binning” or grouping of data into fixed
categories, may also be employed for spatial contexts.

Often spatial data is associated with a particular grid.
The positions are set up in a regular matrix-like struc-
ture and data is affiliated with point locations on the
grid. This is the case for raster data and for other types
of non-vector type data such as topography or sea sur-
face temperature data. There is a tradeoff between the
resolution or the scale of the grid and the amount of
system resources necessary to store and process the da-
ta. Higher resolutions provide more information, but
at a cost of memory space and execution time.

If we approach the data from a rough set point of
view, we can see that there is indiscernibility inherent in
the process of gridding or rasterizing data. A data item
at a particular grid point in essence may represent data
near the point as well. This is due to the fact that often
point data must be mapped to the grid using techniques
such as nearest-neighbor, averaging, or statistics. We

may set up our rough set indiscernibility relation so that
the entire spatial area is partitioned into equivalence
classes where each point on the grid belongs to an
equivalence class. If we change the resolution of the
grid, we are in fact, changing the granularity of the
partitioning, resulting in fewer, but larger classes.

The approximation regions of rough sets come into
play when information concerning sizes, lengths, and
other areal properties of spatial data features are calcu-
lated or displayed. Consider an areal feature such as
an airport. One can reasonably conclude that any grid
point identified as “airport” that is surrounded on all
sides by grid points also identified as “airport” is in fact
a point represented by the feature “airport”. However,
consider points identified as airport that are adjacent to
points identified as meadow. Is it not possible that these
points represent meadow area as well as airport area but
were identified as airport in the classification process?
Likewise, points identified as “meadow” but adjacent
to “airport” points may represent areas that contain part
of the airport. This uncertainty maps naturally to the
use of the approximation regions of the rough set the-
ory, where the lower approximation region represents
the certain data and the boundary region of the upper
approximation represents the uncertain data.

If we force a finer granulation of the partitioning (in-
crease the grid resolution) a smaller boundary region
results. As the partitioning becomes finer and finer,
eventually a point is reached where the boundary re-
gion is non-existent. In this case, the upper and low-
er approximation regions are the same and there is no
uncertainty in the spatial data.

In spatial data, therefore, representation of indis-
cernibility offered by rough set theory is very useful.
When paired with the intuitionistic uncertainty man-
agement, which provides information about the un-
certainty of the boundary region, databases can more
accurately model real world spatial data applications.
A common issue for spatial data representation is the
problem of indeterminate boundaries [3]. One ap-
proach is to model a spatial area as having a broad
boundary [10,15] by classifying it as consisting of a
core in which the classification is certain and a bound-
ary region in which the classification is “less” certain.

Consider the application in which a planning com-
mittee is evaluating regions for the siteing of new in-
dustrial installations. Part of such a process is the de-
velopment of an environmental impact statement which
requires a variety of assessments of the proposed site
locations to determine the effects of the new plant on
the neighboring environment. One type of assessment
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Fig. 2. Environmental Assessment Regions with Broad Boundaries.

might be classification of vegetation by an expert utiliz-
ing imagery and other data sources to determine possi-
ble vulnerability to pollution. Figure 2 illustrates such
a classification.

In the upper part of Fig. 2 are two broad boundary
regions labeled A and B. In the area A on the left,
the X marks a potential plant location. The area A is
considered satisfactory for sites because the vegetation
here has been classified as a type that would not be
affected by the plant’s runoff and emissions. The area B
however has growth that is susceptible to contamination
and should not be used for a site. Note that A has
points both in the certain core and in the outer boundary.
The latter points then have a degree of membership
µA(x) < 1.0 that might be based, for example, on some
metric such as distance from core. So we may have for
the site location µA(x) = 0.p, but its nonmembership,
vA(x) = 0.0, since there is no reason to consider the
site X as unsatisfactory. However suppose now that
other evaluations are made or that further information
becomes available about area B and these areas now
are judged to overlap in their outer boundaries as seen
in lower half of Fig. 2. Since the site location X is
then in the overlap, we have vA(x) = 0.r, r > 0.0, since
there is some doubt as to whether the site is indeed in a
satisfactory area and some hesitation must be felt about
this site.

This example has used intuitionistic modeling but
as discussed previously in this section spatial gridding

could be involved with the data and imagery for the ar-
eas A and B. This would then require a combination of
the rough and intuitionistic set approaches to appropri-
ately model these areas for the environmental impact
assessment of the plant site.

9. Conclusion

In this paper we compared basic rough, fuzzy, and in-
tuitionistic sets, and introduced the intuitionistic rough
set. We then discussed how the intuitionistic rough
set generalizes each of traditional rough, fuzzy, fuzzy-
rough, and intuitionistic sets. These results can be used
to enhance models involving uncertainty.

The intuitionistic rough relational database model
and its operators were formally defined. This model
allows for both rough and intuitionistic modeling of un-
certainty. Because real world applications involve un-
certainty, this model can more accurately represent data
and relationships than traditional relational databases.

The intuitionistic rough object-oriented database
model can also better model real world applications. It
is especially useful in those applications involving spa-
tial or multi-media data. We formally defined the intu-
itionistic rough object-oriented database and illustrated
its usefulness with geographic information examples.

Databases are everywhere, and every day new uses
for databases are discovered. As computers become
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faster and more powerful, more is expected from com-
puterized databases, and future systems will be signif-
icantly more sophisticated. An essential feature of any
database that is used for real world applications in an
“uncertain” world is its ability to manage uncertainty
in data. We have introduced in this paper our models
for intuitionistic rough relational and object-oriented
databases and shown the significance of both rough sets
and intuitionistic sets for uncertainty management.
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